文章提交注意事项:
请在发布文章时用HTML代码加上至少一条新闻来源的链接;原创性消息,可加入相关信息(如涉及公司的网址)的链接。有任何问题,邮件至:he.fang#zhiding.cn
注意:收到邮件乱码的用户请修改客户端的默认字体编码,从"简体中文(GB2312)"修改为"Unicode(UTF-8)"。
solidot新版网站常见问题,请点击这里查看。
Solidot 公告
投 票
热门文章
热门评论
- 样本数太少 没有参考意义 (1 points, 一般) by Craynic 在 2025年09月22日13时13分 星期一 评论到 梵蒂冈的 Flathub 软件包人均安装量最高
- 杞人忧天 (1 points, 一般) by cnma_001 在 2025年08月15日12时04分 星期五 评论到 你一生中被小行星砸到的概率
- 垃圾Paypal... (1 points, 一般) by devfsdvyui 在 2025年07月17日20时13分 星期四 评论到 Valve 在支付公司压力下移除部分成人游戏
- 建议下次不要用动漫这种容易误解的词 (1 points, 一般) by solidot1550041775 在 2025年07月09日15时24分 星期三 评论到 Netflix 称其全球订户有五成看动漫
- 所以应该吃生肉吗 (1 points, 一般) by Craynic 在 2025年07月09日13时25分 星期三 评论到 研究称加工肉没有食用的安全量
- 居然只有95% (1 points, 一般) by Craynic 在 2025年06月30日13时03分 星期一 评论到 日本争议夫妇别姓法案
- 搞反了 (1 points, 一般) by Craynic 在 2025年06月25日18时46分 星期三 评论到 智能手机是人类的寄生物
- 中心思想归纳 (1 points, 一般) by 18611782246 在 2025年05月15日10时37分 星期四 评论到 研究发现要求 AI 聊天机器人给出简洁答案会显著增加幻觉可能性
- 希望能比印度猴子写得好 (1 points, 一般) by Craynic 在 2025年05月06日13时21分 星期二 评论到 微软 CEO 声称该公司三成新代码是用 AI 写的
- 如果这么干的话 (1 points, 一般) by Craynic 在 2025年04月28日13时13分 星期一 评论到 苹果计划将印度制造的 iPhone 出口到美国以避开关税
雕刻在古代墓碑上的日期与你的手机或笔记本电脑中数据的共同点比你想象的要多。它们都涉及传统的、经典的信息,由相对不易出错的硬件承载。量子计算机内部的情况则大不相同:信息本身有自己独特的属性,与标准数字微电子相比,最先进的量子计算机硬件出现错误的可能性要高出上万亿倍。这种巨大的出错概率是阻碍量子计算实现其伟大前景的最大问题。幸运的是,一种名为量子纠错(QEC)的方法可以解决这个问题——至少原则上如此。过去 25 年里建立的成熟理论体系现在提供了坚实的理论基础,实验家展现了数十个 QEC 的原理证明示例。但是这些试验仍然没有达到降低系统整体错误率所需的质量和复杂程度。
机器学习模型正呈指数级增长。训练它们所需的能量也成倍增长——通过训练之后 AI 才能准确处理图像或文本或视频。随着人工智能社区努力应对其对环境的影响,一些会议现在要求论文提交者提供有关二氧化碳排放的信息。新研究提供了一种更准确的方法计算排放量。它还比较了影响它们的因素,并测试了两种减少排放的方法。
研究人员训练了 11 个规模不等的机器学习模型处理语言或图像。训练时间从单 GPU 上 1 小时到 256 个 GPU 上 8 天不等。他们记录每秒的能耗数据。还获得了 16 个地理区域 2020 年期间以五分钟为单位的每千瓦时能源碳排放量。然后他们可以比较在不同地区、不同时间运行不同模型的碳排放量。
为训练最小模型的 GPU 供电的碳排放量大致相当于为手机充电。最大的模型包含了 60 亿个参数,参数是衡量模型大小的标准。虽然它的训练只完成了 13%,但是 GPU 的碳排放量几乎相当于一个美国家庭一年耗电的碳排放量。而一些已部署的模型,例如 OpenAI 的 GPT-3,包含的参数超过了 1000 亿个。
减少碳排放的最大因素是地理区域:各地区每千瓦时的二氧化碳排放量从 200 克到 755 克不等。除了改变位置之外,研究人员还测试了两种减少二氧化碳排放的方法,他们能做到这一点得益于高时间粒度的数据。第一种方法是“灵活的开始”,这种方法可能会将训练延迟长达 24 个小时。对于需要几天时间训练的最大的模型,推迟一天通常只能将碳排放量减少不到 1%,但是对于小得多的模型,这样的延迟可以减少 10% 到 80% 的排放量。第二种方法是“暂停加恢复”,这种方法是在排放量高的时段暂停训练,只要总的训练时间增长不超过一倍即可。这种方法给小模型带来的好处只有几个百分点,但是在半数的地区,它让最大的模型受益达到 10% 到 30%。每千瓦时的排放量随着时间波动,部分是因为由于缺乏足够的能量存储,当风能和太阳能等间歇性清洁能源无法满足需求时,电网必须依赖“脏电”。