文章提交注意事项:
请在发布文章时用HTML代码加上至少一条新闻来源的链接;原创性消息,可加入相关信息(如涉及公司的网址)的链接。有任何问题,邮件至:he.fang#zhiding.cn
注意:收到邮件乱码的用户请修改客户端的默认字体编码,从"简体中文(GB2312)"修改为"Unicode(UTF-8)"。
solidot新版网站常见问题,请点击这里查看。
Solidot 公告
投 票
热门文章
热门评论
- 不完备定理无法证明不是模拟 (1 points, 一般) by scottcgi 在 2025年11月01日11时26分 星期六 评论到 数学证明否定宇宙是模拟的
- 样本数太少 没有参考意义 (1 points, 一般) by Craynic 在 2025年09月22日13时13分 星期一 评论到 梵蒂冈的 Flathub 软件包人均安装量最高
- 杞人忧天 (1 points, 一般) by cnma_001 在 2025年08月15日12时04分 星期五 评论到 你一生中被小行星砸到的概率
- 垃圾Paypal... (1 points, 一般) by devfsdvyui 在 2025年07月17日20时13分 星期四 评论到 Valve 在支付公司压力下移除部分成人游戏
- 建议下次不要用动漫这种容易误解的词 (1 points, 一般) by solidot1550041775 在 2025年07月09日15时24分 星期三 评论到 Netflix 称其全球订户有五成看动漫
- 所以应该吃生肉吗 (1 points, 一般) by Craynic 在 2025年07月09日13时25分 星期三 评论到 研究称加工肉没有食用的安全量
- 居然只有95% (1 points, 一般) by Craynic 在 2025年06月30日13时03分 星期一 评论到 日本争议夫妇别姓法案
- 搞反了 (1 points, 一般) by Craynic 在 2025年06月25日18时46分 星期三 评论到 智能手机是人类的寄生物
- 中心思想归纳 (1 points, 一般) by 18611782246 在 2025年05月15日10时37分 星期四 评论到 研究发现要求 AI 聊天机器人给出简洁答案会显著增加幻觉可能性
- 希望能比印度猴子写得好 (1 points, 一般) by Craynic 在 2025年05月06日13时21分 星期二 评论到 微软 CEO 声称该公司三成新代码是用 AI 写的
人工智能很大程度上是数字游戏。10 年前深度神经网络开始超越传统算法,这是因为我们终于拥有了足够的数据和处理能力。深度神经网络是一种学习识别数据模式的人工智能形式。今天的神经网络愈加渴望数据和算力。网络的参数有数百万甚至是数十亿个,参数代表了人工神经元之间连接的强度,训练神经网络需要对其仔细调整。目标是寻找到近于理想的值,该过程被称为优化,但是训练网络达到这一点并不容易。伦敦 DeepMind 的研究科学家 Petar Veličković 表示:“训练可能需要几天、几周甚至是几个月的时间。”
这种情况也许很快会改变。安大略省圭尔夫大学的 Boris Knyazev 和同事设计并训练了一个“超网络(hypernetwork)”——一种其他神经网络的霸主——可以加快训练的过程。对于一个为了某项任务设计的、未经训练的新神经网络,超网络可以在几分之一秒内预测出它的参数,从理论上让训练变得不再有必要。由于超网络学习了深度神经网络设计中极其复杂的模式,因此这项工作也可能具有更深层次的理论意义。
现阶段超网络在某些环境中的表现好得出人意料,但仍然有改善的空间——考虑到问题的量级,这是很自然的。Veličković 表示,如果他们能解决这个问题,“将对机器学习产生全方位的影响。”
目前训练和优化神经网络的最好方法是随机梯度下降法(SGD)技术的变体。训练涉及最小化网络在给定任务(例如图像识别)中所犯的错误。SGD 算法通过大量标记数据调整网络参数并减少错误或损失。梯度下降是从损失函数的高值下降到某个最小值的迭代过程,代表了足够好的(有时甚至是最好的)参数值。
但是这种技术只有在你有一个网络需要优化的时候才有效。为了构建最初的神经网络——通常由从输入到输出之间的多层人工神经元组成,工程师必须依靠直觉和经验法则。这些架构在神经元的层数,每层的神经元数量等方面会有所不同。
这种情况也许很快会改变。安大略省圭尔夫大学的 Boris Knyazev 和同事设计并训练了一个“超网络(hypernetwork)”——一种其他神经网络的霸主——可以加快训练的过程。对于一个为了某项任务设计的、未经训练的新神经网络,超网络可以在几分之一秒内预测出它的参数,从理论上让训练变得不再有必要。由于超网络学习了深度神经网络设计中极其复杂的模式,因此这项工作也可能具有更深层次的理论意义。
现阶段超网络在某些环境中的表现好得出人意料,但仍然有改善的空间——考虑到问题的量级,这是很自然的。Veličković 表示,如果他们能解决这个问题,“将对机器学习产生全方位的影响。”
目前训练和优化神经网络的最好方法是随机梯度下降法(SGD)技术的变体。训练涉及最小化网络在给定任务(例如图像识别)中所犯的错误。SGD 算法通过大量标记数据调整网络参数并减少错误或损失。梯度下降是从损失函数的高值下降到某个最小值的迭代过程,代表了足够好的(有时甚至是最好的)参数值。
但是这种技术只有在你有一个网络需要优化的时候才有效。为了构建最初的神经网络——通常由从输入到输出之间的多层人工神经元组成,工程师必须依靠直觉和经验法则。这些架构在神经元的层数,每层的神经元数量等方面会有所不同。
斯洛伐克交通管理局为一款时速超过 160 公里、飞行高度超过 2,500米的飞行汽车颁发了适航证书。这款混合动力飞行汽车 AirCar 配备了宝马发动机,使用常规汽油泵燃料运行。从汽车变成飞机需要 2 分 15 秒。公司表示,该认证是在 70 小时的飞行测试和 200 多次起飞和着陆之后获得的。汽车创造者 Stefan Klein 教授表示:“AirCar 认证为大规模生产高效的飞行汽车打开了大门。”“这是对我们永久改变中距离旅行能力的官方认证,也是最终认证。”去年 6 月飞行汽车在斯洛伐克的尼特拉和布拉迪斯拉发国际机场之间完成了 35 分钟的飞行。该公司计划“在不久的将来从巴黎飞往伦敦。”西英格兰大学航空电子和飞机系统高级研究员 Steve Wright 博士对此感到谨慎乐观——但认为还有一段路要走。