文章提交注意事项:
请在发布文章时用HTML代码加上至少一条新闻来源的链接;原创性消息,可加入相关信息(如涉及公司的网址)的链接。有任何问题,邮件至:he.fang#zhiding.cn
注意:收到邮件乱码的用户请修改客户端的默认字体编码,从"简体中文(GB2312)"修改为"Unicode(UTF-8)"。
solidot新版网站常见问题,请点击这里查看。
Solidot 公告
投 票
热门文章
热门评论
- 样本数太少 没有参考意义 (1 points, 一般) by Craynic 在 2025年09月22日13时13分 星期一 评论到 梵蒂冈的 Flathub 软件包人均安装量最高
- 杞人忧天 (1 points, 一般) by cnma_001 在 2025年08月15日12时04分 星期五 评论到 你一生中被小行星砸到的概率
- 垃圾Paypal... (1 points, 一般) by devfsdvyui 在 2025年07月17日20时13分 星期四 评论到 Valve 在支付公司压力下移除部分成人游戏
- 建议下次不要用动漫这种容易误解的词 (1 points, 一般) by solidot1550041775 在 2025年07月09日15时24分 星期三 评论到 Netflix 称其全球订户有五成看动漫
- 所以应该吃生肉吗 (1 points, 一般) by Craynic 在 2025年07月09日13时25分 星期三 评论到 研究称加工肉没有食用的安全量
- 居然只有95% (1 points, 一般) by Craynic 在 2025年06月30日13时03分 星期一 评论到 日本争议夫妇别姓法案
- 搞反了 (1 points, 一般) by Craynic 在 2025年06月25日18时46分 星期三 评论到 智能手机是人类的寄生物
- 中心思想归纳 (1 points, 一般) by 18611782246 在 2025年05月15日10时37分 星期四 评论到 研究发现要求 AI 聊天机器人给出简洁答案会显著增加幻觉可能性
- 希望能比印度猴子写得好 (1 points, 一般) by Craynic 在 2025年05月06日13时21分 星期二 评论到 微软 CEO 声称该公司三成新代码是用 AI 写的
- 如果这么干的话 (1 points, 一般) by Craynic 在 2025年04月28日13时13分 星期一 评论到 苹果计划将印度制造的 iPhone 出口到美国以避开关税
一组 MIT 研究人员探索一种扭转全球变暖趋势的激进想法:使用大量“太空气泡”将阳光反射出我们的星球。人类自工业革命以来排放的大量温室气体正在我们的星球周围形成一种“毯子”,将热量滞留在大气中,导致全球气温变得越来越高。一个 MIT 研究人员组成的跨学科团队建议将太阳能地球工程带入太空,而不是将粒子注入地球大气层给地球降温。研究小组探索如果在拉格朗日 L1 点放置一个由气泡制成的防护罩会出现什么情况,在拉格朗日 L1 点上,地球和太阳的引力形成一种平衡,让这个防护罩能够无限期地保持在轨道上。这个建议中的防护罩大约有巴西那么大,防护罩的气泡可以在太空中制造并部署,可能是用硅制作——该小组在实验室里尝试过制造“太空气泡”。他们在新闻发布会上表示:“初步试验成功地在 0.0028 atm 的压力下使薄膜气泡膨胀,并将其保持在-50℃左右(接近于零压力和接近零温度的太空条件)。”因为这些气泡距离地球差不多有一百万英里之遥,MIT 团队表示,这种太阳能地球工程方法不会像在地球大气层内的方法那样冒险。这不是第一次有人提议在太空中放置一个太阳保护罩来帮助地球降温了,但是用气泡制造保护罩会让我们在出错时有一个相对简单的方法中止任务:只要戳破气泡就行了。
研究人员表示,可以通过监听鸡叫声改善养殖鸡福祉的人工智能可能会在五年内问世。新研究表明,这项新技术可以检测和量化大型室内棚屋中的鸡发出的求救信号,将其与其他谷仓噪声区分开,准确率达到 97%。类似的方法最终可被用于提高其他养殖动物的福祉标准。每年全世界大约要养殖 250 亿只鸡——许多鸡都生活在巨大的鸡舍中,每个鸡舍里都饲养着数千只鸡。监听它们发出的声音是评估此类生物福祉的一种方法。香港城市大学动物行为和福利学副教授 Alan McElligott 表示:“鸡的声音非常响亮,但是求救的声音往往比其他的声音更响亮,就是我们所说的纯音调的叫声。”“即使是未经训练的耳朵也不难将它们分辨出来。”理论上农民可以根据鸡的叫声衡量其痛苦程度,在必要时加以照料。然而在饲养了数千或数万只鸡的商业化鸡群中,安排人类观察员是不切实际的。McElligott 表示,一方面人类的存在可能会进一步给鸡群带来压力,而且鸡的数量这么大,客观量化求救信号的数量是不可能的。
芝加哥大学科学家开发出一种新算法,可提前一周预测未来的犯罪,准确率达到了 90%,预测范围约为 1000 英尺。它通过学习暴力和财产犯罪方面公共数据的模式进行预测。该工具使用了芝加哥市两类报告事件进行测试和验证:暴力犯罪(凶杀、袭击和殴打)和财产犯罪(入室盗窃、盗窃和机动车盗窃)。之所以使用这两类数据是因为在历来对执法部门缺乏信任和合作的城市地区,这两类案件是最有可能报警的。与毒品犯罪、交通拦截检查和其他的轻罪不同,这两类犯罪也不太容易出现执法偏见。 新模型通过检查离散案件的时间和空间坐标划分犯罪,检测模式以预测未来的犯罪。它将城市划分为大约 1000 英尺宽的“空间片”,然后预测区域内的犯罪情况。以前的模型更多地依赖传统邻里或者政治边界,这会受到偏见的影响。该模型在美国其他七个城市的数据上也表现得同样出色:亚特兰大、奥斯汀、底特律、洛杉矶、费城、波特兰和旧金山。主要作者 Ishanu Chattopadhyay 谨慎地指出,工具的准确性并不意味着它应该被用于指导执法政策; Chattopadhyay 表示,例如警察部门不应该使用它来主动在社区聚集以防止犯罪。相反它应该被添加到城市政策和治安策略的工具箱中应对犯罪。他表示:“我们创建了城市环境的数字孪生。如果向它提供过去发生过的数据,它会告诉你未来会发生什么。”Chattopadhyay 补充表示:“这并不神奇;也存在局限性,但我们对其进行了验证,效果非常好。”“现在你可以将它作为一个模拟工具,看看如果城市内一个地区的犯罪率上升是什么情况,或者另一个地区加强执法会发生什么。如果你应用所有这些不同的变量,你就会看到系统的回应是如何演变的。”研究论文发表在《Nature Human Behavior》期刊上。